ohai.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A cozy, fast and secure Mastodon server where everyone is welcome. Run by the folks at ohai.is.

Administered by:

Server stats:

1.8K
active users

#mathemarics

0 posts0 participants0 posts today
Alm<p><span class="h-card" translate="no"><a href="https://mastodon.social/@gutenberg_org" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>gutenberg_org</span></a></span> Noether’s Theorem on a page — Das <a href="https://mastodon.social/tags/Noether" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Noether</span></a> Theorem auf einer Seite: Diese sehr einseitige Darstellung des Noether-Theorems erfüllt die hohen Anforderungen, die an private Veröffentlichungen im Internet gestellt werden. Sie ist durch ein populärwissenschaftliches Buch über das wundervolle Theorem der Emmy Noether inspiriert worden, das in der Bibliothek jedes Gelehrten fehlen sollte: <a href="https://www.alm-paulusch.de/Noether_Theorem.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">alm-paulusch.de/Noether_Theore</span><span class="invisible">m.pdf</span></a> <a href="https://mastodon.social/tags/mathematik" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematik</span></a> <a href="https://mastodon.social/tags/geometrie" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometrie</span></a> <a href="https://mastodon.social/tags/formeldestages" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>formeldestages</span></a> <a href="https://mastodon.social/tags/mathemarics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathemarics</span></a> <a href="https://mastodon.social/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a></p>
Isaac Mottistone<p><a href="https://mastodonapp.uk/tags/Maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Maths</span></a> <a href="https://mastodonapp.uk/tags/Mathemarics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathemarics</span></a>. Fun with curves. The graphing of a cuboid, x^n+y^n+z^n=1, n large and even. The faces of the cuboid appear planar but are in fact curved. Apart from (1,0,0), (0,1,0) and (0,0,1), there are no rational solutions in x, y and z in keeping with Fermat’s Last Theorem which asserts that there are no such solutions to the equation for any n &gt; 2.</p>
Isaac Mottistone<p><a href="https://mastodonapp.uk/tags/Maths" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Maths</span></a> <a href="https://mastodonapp.uk/tags/Mathemarics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathemarics</span></a> There are numbers so large that even if all the matter in the visible universe were to be concocted into an ink, there would not be enough material to write them down with.</p><p>These Numbers Are So Big They Literally Don't Fit Inside The Universe - IFLScience <a href="https://apple.news/AWgSqI2MES6C1G0zIYhNF9Q" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">apple.news/AWgSqI2MES6C1G0zIYh</span><span class="invisible">NF9Q</span></a></p>